訂閱
糾錯
加入自媒體

醫(yī)療治病,人工智能解決什么問題?

英特爾人工智能產(chǎn)品事業(yè)部副總裁、人工智能實(shí)驗(yàn)室和軟件總經(jīng)理Arjun Bansal指出,目前醫(yī)療行業(yè)主要有三大挑戰(zhàn),第一是數(shù)據(jù)量特別大,而且不斷地在增加;第二是臨床醫(yī)生不夠多,第三是高額的時間和花費(fèi)成本。為了解決這三大類的問題和挑戰(zhàn),英特爾正在借助領(lǐng)先的人工智能技術(shù)產(chǎn)品組合,與眾多國內(nèi)外行業(yè)合作伙伴在疾病監(jiān)測、臨床環(huán)境、成像分析、虛擬服務(wù)以及虛擬現(xiàn)實(shí)助手等領(lǐng)域積極部署人工智能解決方案,為醫(yī)療領(lǐng)域的數(shù)據(jù)處理提供技術(shù)支撐,推動醫(yī)療領(lǐng)域的智能化,擴(kuò)展精準(zhǔn)醫(yī)療領(lǐng)域的邊界。

疾病監(jiān)測

在疾病監(jiān)測領(lǐng)域,借助基于機(jī)器學(xué)習(xí)或認(rèn)知系統(tǒng)的預(yù)測模型,醫(yī)生可以根據(jù)患者的特征對其是否會患上慢性疾病進(jìn)行風(fēng)險預(yù)估,無需堅(jiān)持既定的護(hù)理計(jì)劃或讓患者重復(fù)入院治療。這樣的早期干預(yù)可以大大降低患者的醫(yī)療費(fèi)用。Montefiore Health System部署了基于英特爾?至強(qiáng)?處理器上的數(shù)據(jù)分析平臺,該平臺可實(shí)時分析各種大量原始數(shù)據(jù),幫助臨床醫(yī)生為患者確定最佳治療計(jì)劃。同時還可以利用規(guī)范模型來識別病人呼吸衰竭的風(fēng)險,這樣醫(yī)護(hù)人員就可以采取預(yù)警措施,從而及時干預(yù)、挽救生命并節(jié)約資源。

臨床環(huán)境

在臨床環(huán)境中也可以利用基于機(jī)器學(xué)習(xí)的模型,常見的預(yù)測模型包括使用電子病歷數(shù)據(jù)來評估在醫(yī)院內(nèi)感染疾病的風(fēng)險,通過操作模型預(yù)測病人進(jìn)入急癥室的概率等。英特爾與夏普醫(yī)療共同開發(fā)的快速反應(yīng)團(tuán)隊(duì)模型,可以根據(jù)電子病歷中的數(shù)據(jù)預(yù)測哪些病人需要快速反應(yīng)小組的干預(yù)。同時通過該模型,醫(yī)院也可以迅速找到相應(yīng)的急救人員和設(shè)備,進(jìn)而縮短響應(yīng)時間。在利用歷史數(shù)據(jù)對模型進(jìn)行測試的實(shí)驗(yàn)中, 預(yù)估患者需要快速反應(yīng)小組干預(yù)的準(zhǔn)確率約為80%。

成像分析

利用深度學(xué)習(xí)分析醫(yī)學(xué)圖像也是人工智能技術(shù)在醫(yī)療領(lǐng)域的重要應(yīng)用之一。在這方面英特爾已經(jīng)與業(yè)界合作伙伴合作,利用深度學(xué)習(xí)技術(shù)分析醫(yī)學(xué)圖像來進(jìn)行腫瘤檢測。在與GE醫(yī)療的合作中, GE醫(yī)療集團(tuán)采用英特爾?至強(qiáng)?可擴(kuò)展平臺,將成像設(shè)備的總體擁有成本降低25%。通過與GE Healthcare的成像解決方案配合使用,英特爾至強(qiáng)可擴(kuò)展平臺可以幫助放射科醫(yī)師提高閱讀效率,第一張圖像顯示時間降至2秒以下,全部研究加載時間降至8秒以下。

虛擬服務(wù)

人工智能的第四個用例是以遠(yuǎn)程醫(yī)療為代表的虛擬服務(wù)。遠(yuǎn)程醫(yī)療的應(yīng)用為企業(yè)和消費(fèi)者提供了更為豐富的解決方案,住院醫(yī)療機(jī)器人InTouch Health就是新穎解決方案的代表之一。同時,由此產(chǎn)生的視頻數(shù)據(jù)集可用于開發(fā)人工智能解決方案,進(jìn)而完善臨床診斷。例如在遠(yuǎn)程中風(fēng)疾病診斷的案例中,基于深度學(xué)習(xí)的模型可以識別患者的早期中風(fēng)特征,繼而提高診斷正確率并大大縮短診療時間。

虛擬現(xiàn)實(shí)

人工智能的第五個用例是創(chuàng)建下一代虛擬現(xiàn)實(shí)助手。在未來,人工智能可以在虛擬現(xiàn)實(shí)會話中對參與者的交互進(jìn)行響應(yīng)。患者可以與虛擬環(huán)境進(jìn)行交互,并觀察病情可能發(fā)生的變化。在外科訓(xùn)練方面,人工智能可以用來分析圖像,進(jìn)而識別頂級外科醫(yī)生的最佳做法,這些方法可以被反饋到模擬中,并可以隨著時間的推移不斷獲得改進(jìn)。

總之,數(shù)字化轉(zhuǎn)型為醫(yī)療健康領(lǐng)域帶來了新機(jī)會,在轉(zhuǎn)型的過程中,醫(yī)療組織應(yīng)該將數(shù)據(jù)作為核心能力來提升業(yè)務(wù)流程和患者體驗(yàn)。隨著計(jì)算分析能力的進(jìn)一步提升,人工智能在醫(yī)療健康領(lǐng)域的應(yīng)用場景將更加豐富。

聲明: 本文系OFweek根據(jù)授權(quán)轉(zhuǎn)載自其它媒體或授權(quán)刊載,目的在于信息傳遞,并不代表本站贊同其觀點(diǎn)和對其真實(shí)性負(fù)責(zé),如有新聞稿件和圖片作品的內(nèi)容、版權(quán)以及其它問題的,請聯(lián)系我們。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個字

您提交的評論過于頻繁,請輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無評論

暫無評論

人工智能 獵頭職位 更多
掃碼關(guān)注公眾號
OFweek人工智能網(wǎng)
獲取更多精彩內(nèi)容
文章糾錯
x
*文字標(biāo)題:
*糾錯內(nèi)容:
聯(lián)系郵箱:
*驗(yàn) 證 碼:

粵公網(wǎng)安備 44030502002758號