訂閱
糾錯
加入自媒體

MLOps人工智能生產(chǎn)加速論壇

開發(fā)AI應(yīng)用并不容易,而將它們應(yīng)用于業(yè)務(wù)之上,這個難度系數(shù)則變得更高。

根據(jù)IDC最近的一項調(diào)查,在已經(jīng)開始采用AI的企業(yè)中,只有不到三分之一的企業(yè)真正將AI投入生產(chǎn)。

企業(yè)往往要等到發(fā)布一個應(yīng)用之前,才能完全意識到運行AI的復雜性。這些臨時發(fā)現(xiàn)的問題似乎無法很快地得到解決,因此部署工作往往被擱置和遺忘。

MLOps(Machine Learning Operations):一種將機器學習模型應(yīng)用到生產(chǎn)環(huán)境中的方法和實踐。它涵蓋了整個機器學習模型的生命周期,包括模型開發(fā)、訓練、部署、管理、更新以及監(jiān)控。MLOps旨在使機器學習模型部署更快、更可靠、更易于管理,同時還強調(diào)了透明度、可重復性和可維護性,這些都是確保生產(chǎn)環(huán)境中的機器學習模型正常運行的重要因素。

各行業(yè)在驗證和落地的過程中,產(chǎn)生了大量數(shù)據(jù),并取得了一定的成就,但這才剛剛開始,既然有海量的數(shù)據(jù),就有進一步發(fā)展的空間。鑒于MLOps的所有流程和行業(yè)的微妙性質(zhì),將兩者合并是一個需要更多工作的研究領(lǐng)域。

為了幫助企業(yè)順利完成AI部署,容天將MLOps與NVIDIA加速的基礎(chǔ)設(shè)施和軟件相結(jié)合,為行業(yè)探索者提供豐富的解決方案,創(chuàng)建和加速生產(chǎn)級AI的端到端平臺,幫助企業(yè)優(yōu)化他們的AI流程,包括現(xiàn)有運行的以及重建的管線。

與科學實驗不同,項目落地需要更高的可行性來支撐。數(shù)據(jù)科學的快速發(fā)展也導致了標準和操作的一些不穩(wěn)定,缺乏統(tǒng)一的模式來控制數(shù)據(jù)生產(chǎn)和管理的生命周期,乃至后續(xù)的建模和部署。技術(shù)手段已經(jīng)以多種方式進入各領(lǐng)域。然而,據(jù)統(tǒng)計數(shù)據(jù),大約90%的模型從未投入生產(chǎn),只剩下10%需要管理。這意味著這10%中的更少是正式落地到落地使用中的。所以,為了進一步提高醫(yī)療整體研發(fā)效益,更加需要的是將MLOps與硬件結(jié)合,以提高模型的可靠性和魯棒性、優(yōu)化模型的性能和效率、改善開發(fā)流程以及降低整體成本為目標的方法和實踐,搭配加速工具實現(xiàn)智慧醫(yī)療的快步發(fā)展。

會議日程:

聲明: 本網(wǎng)站所刊載信息,不代表OFweek觀點?帽菊靖寮瑒(wù)經(jīng)書面授權(quán)。未經(jīng)授權(quán)禁止轉(zhuǎn)載、摘編、復制、翻譯及建立鏡像,違者將依法追究法律責任。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個字

您提交的評論過于頻繁,請輸入驗證碼繼續(xù)

暫無評論

暫無評論

人工智能 獵頭職位 更多
掃碼關(guān)注公眾號
OFweek人工智能網(wǎng)
獲取更多精彩內(nèi)容
文章糾錯
x
*文字標題:
*糾錯內(nèi)容:
聯(lián)系郵箱:
*驗 證 碼:

粵公網(wǎng)安備 44030502002758號