訂閱
糾錯
加入自媒體

人工智能安全關(guān)鍵型系統(tǒng)中的驗證和確認

隨著世界各個國家地區(qū)紛紛制定人工智能相關(guān)法規(guī),設(shè)計基于人工智能的系統(tǒng)的工程師必須滿足這些新出臺的規(guī)范和標準要求。在 2023  10 月 30 日,美國白宮也頒布了一項關(guān)于人工智能法規(guī)的行政命令,強調(diào)穩(wěn)健的驗證和確認V&V過程對基于人工智能的系統(tǒng)至關(guān)重要。該指令要求人工智能公司報告和測試特定模型,以確保人工智能系統(tǒng)按預(yù)期運行并滿足指定要求。 

人工智能法規(guī)和 V&V 過程將對安全關(guān)鍵型系統(tǒng)產(chǎn)生重大影響。人工智能越來越多地用于系統(tǒng)設(shè)計,包括汽車和航空航天工業(yè)等領(lǐng)域的安全關(guān)鍵型應(yīng)用。 

基于人工智能的系統(tǒng)中的驗證和確認 

驗證旨在確定人工智能模型是否按照指定的要求設(shè)計和開發(fā),而確認則是檢查產(chǎn)品是否符合客戶的要求和預(yù)期。通過采用 V&V 方法,工程師可以確保人工智能模型的輸出符合規(guī)范,從而實現(xiàn)早期 Bug 檢測并緩解數(shù)據(jù)偏向的風險。 

在安全關(guān)鍵型系統(tǒng)中使用人工智能的一項優(yōu)勢是,人工智能模型可以模擬物理系統(tǒng)并驗證設(shè)計。工程師可對基于人工智能的整個系統(tǒng)進行仿真,并使用數(shù)據(jù)在不同場景中測試系統(tǒng),包括離群值事件。如果在安全關(guān)鍵型場景中執(zhí)行 V&V,則可確;谌斯ぶ悄艿陌踩P(guān)鍵型系統(tǒng)能夠在各種情況下保持其性能水平。 

大多數(shù)開發(fā)人工智能增強產(chǎn)品的行業(yè),都要求工程師在產(chǎn)品上市前遵循相關(guān)標準。這些認證過程可確保此類產(chǎn)品中融入特定元素。工程師可執(zhí)行 V&V 來測試這些元素的功能,這使得獲得認證更容易。 

在汽車行業(yè)中,ISO/CD PAS 8800 是一項擬制標準,旨在說明道路車輛的安全相關(guān)屬性和風險因素。在航空航天和國防領(lǐng)域,認證是強制性要求。機載系統(tǒng)和設(shè)備認證中的軟件考慮因素DO178C等現(xiàn)行標準不一定能直接幫助應(yīng)對人工智能所帶來的獨特挑戰(zhàn)。因此,新的 ARP6983 過程標準正在制定中,旨在為開發(fā)和認證實現(xiàn)人工智能的航空安全相關(guān)產(chǎn)品提供規(guī)范。

 Deep Learning Toolbox™ Verification Library 和 MATLAB® Test™ 可以幫助工程師開發(fā)有助于遵循行業(yè)標準的軟件,并簡化大型系統(tǒng)中人工智能模型的驗證和測試,從而使他們在航空和汽車領(lǐng)域的 V&V 方面保持領(lǐng)先地位。

航空航天工程團隊使用基于模型的設(shè)計來管理和協(xié)調(diào)復(fù)雜的需求,自動生成代碼,并嚴格測試模型和系統(tǒng)。 

安全關(guān)鍵型系統(tǒng)中的 V&V 人工智能過程 

在執(zhí)行 V&V 時,工程師的目標是確保人工智能組件既能滿足指定的要求,又能在各種工況下都表現(xiàn)出可靠性和安全性,因此可以隨時部署。與人工智能相關(guān)的 V&V 過程涉及執(zhí)行軟件保證活動,其中包括靜態(tài)和動態(tài)分析、測試、形式化方法和真實運營監(jiān)控的組合。 

各行各業(yè)的 V&V 過程可能略有不同,但 V&V 過程的主要步驟都包括:

分析決策過程以解決黑盒問題;

根據(jù)有代表性的數(shù)據(jù)集測試模型;

執(zhí)行人工智能系統(tǒng)仿真;

確保模型在可接受的范圍內(nèi)運行。 

下述 V&V 過程中的步驟是迭代步驟。隨著工程師收集新數(shù)據(jù)、獲得新深入信息和集成運行反饋,人工智能系統(tǒng)可以得到不斷完善和改進。 

分析決策過程以解決黑盒問題 

在使用人工智能模型為系統(tǒng)添加自動化功能時,工程師會面臨黑盒問題。理解基于人工智能的系統(tǒng)如何作出決策,對于提供透明度至關(guān)重要,因為這使工程師和科學家能夠?qū)δP皖A(yù)測建立信任并理解決策。 

特征重要性分析方法可以幫助工程師確定哪些輸入變量對模型預(yù)測的影響最大。這種分析方法的工作方式因模型(如基于樹的模型和線性模型)而異,但是,一般過程會為每個輸入變量賦予一個特征重要性分數(shù)。重要性分數(shù)越高,該特征對模型決策的影響就越大。對于汽車行業(yè)的安全關(guān)鍵型系統(tǒng),變量可能包括環(huán)境因素,如降水或其他車輛的存在和行為。 

可解釋性方法有助于深入了解模型行為。當模型的黑盒性質(zhì)使我們無法使用其他方法時,這種方法尤其重要。以圖像為例,這些方法可用于識別圖像中對最終預(yù)測貢獻最大的區(qū)域。這樣,工程師便可理解模型在做出預(yù)測時的主要關(guān)注點。

根據(jù)有代表性的數(shù)據(jù)集測試模型 

通常,工程師會評估人工智能模型在真實場景中的性能,以確保安全關(guān)鍵型系統(tǒng)能夠在這些場景中穩(wěn)健運行。他們的目標是找出各種限制,以提高模型的準確度和可靠性。工程師首先會收集大量有代表性的真實數(shù)據(jù)集,并通過清洗數(shù)據(jù)使其適用于測試。然后,他們會設(shè)計測試用例來評估模型的各個方面,例如準確度和可再現(xiàn)性。最后,工程師會將模型應(yīng)用于數(shù)據(jù)集,記錄結(jié)果并將其與預(yù)期輸出進行比較。模型設(shè)計將根據(jù)數(shù)據(jù)測試的結(jié)果進行改進。 

執(zhí)行人工智能系統(tǒng)仿真 

憑借基于人工智能的系統(tǒng)仿真,工程師能夠在受控環(huán)境中評估和評價系統(tǒng)的性能。在仿真期間,工程師會創(chuàng)建一個虛擬環(huán)境,以在各種條件下對真實系統(tǒng)進行模擬。首先,他們會定義仿真系統(tǒng)所需的輸入和參數(shù),例如初始條件和環(huán)境因素。然后,他們使用 Simulink® 等軟件執(zhí)行仿真,該軟件會輸出系統(tǒng)對建議場景的響應(yīng)。與數(shù)據(jù)測試一樣,仿真結(jié)果會與預(yù)期或已知結(jié)果進行比較,以便于模型得到逐步改進。 

為了讓人工智能模型安全可靠地運行,必須建立界限并監(jiān)控模型的行為,以確保該模型在這些邊界內(nèi)運行。如果模型已基于有限的數(shù)據(jù)集訓練,并在運行時遇到前所未見的數(shù)據(jù),則會出現(xiàn)最常見的邊界問題之一。同樣,模型可能不夠穩(wěn)健,有可能導致不可預(yù)測的行為。 

工程師采用緩解數(shù)據(jù)偏向和增強數(shù)據(jù)的方法,以確保人工智能模型在可接受的范圍內(nèi)運行。 

緩解數(shù)據(jù)偏向的一種方法是,讓用于訓練人工智能模型的數(shù)據(jù)具有多變性,這有助于減少模型對限制其學習的重復(fù)模式的依賴。借助數(shù)據(jù)增強方法,可確保代表不同類別和人群的數(shù)據(jù)都能得到公平和平等的處理。在自動駕駛汽車場景中,數(shù)據(jù)增強可能涉及使用不同角度的行人照片來幫助模型檢測行人,而不管這些行人的位姿如何。數(shù)據(jù)平衡方法通常與數(shù)據(jù)增強結(jié)合使用,包含來自每個數(shù)據(jù)類的相似樣本。以行人為例,平衡數(shù)據(jù)意味著,針對每種不同的行人場景,如不同體型、服裝樣式、光照條件和背景,數(shù)據(jù)集都必須包含與之對應(yīng)數(shù)量的圖像。這種方法可以最大限度地減少偏向,并提高模型在各種現(xiàn)實情況下的泛化能力。 

在安全關(guān)鍵型場景中部署神經(jīng)網(wǎng)絡(luò)時,穩(wěn)健性是首要考慮因素。細微而難以察覺的變化會帶來重大風險,使神經(jīng)網(wǎng)絡(luò)產(chǎn)生誤分類。這些干擾可能會導致神經(jīng)網(wǎng)絡(luò)輸出不正確或危險的結(jié)果。在錯誤可能導致災(zāi)難的系統(tǒng)中,這種情況尤其令人擔憂。一種解決方案是,將形式化方法納入開發(fā)和驗證過程中。形式化方法就是使用嚴格的數(shù)學模型來確立和證明神經(jīng)網(wǎng)絡(luò)的正確性屬性。通過應(yīng)用這些方法,工程師可以提高網(wǎng)絡(luò)對某些類型干擾的抵御能力,從而確保安全關(guān)鍵型應(yīng)用具有更高的穩(wěn)健性和可靠性。

W 形開發(fā)過程是一種非線性 V&V 工作流,旨在確保人工智能模型的準確度和可靠性。 

結(jié)束語 

在基于人工智能的安全關(guān)鍵型系統(tǒng)時代,V&V 過程對于獲得行業(yè)認證和遵循法律要求將變得至關(guān)重要。若要構(gòu)建和維護值得信賴的系統(tǒng),工程師需要采用驗證方法,為運行這些系統(tǒng)的人工智能模型提供可解釋性和透明度。隨著工程師利用人工智能來幫助執(zhí)行 V&V 過程,他們必須探索各種測試方法來應(yīng)對人工智能技術(shù)所帶來的日益復(fù)雜的挑戰(zhàn)。在安全關(guān)鍵型系統(tǒng)中,這些工作可確保人工智能以負責且透明的方式得到使用。 

作者:MathWorks 深度學習首席產(chǎn)品經(jīng)理 Lucas Garcia 博士 

關(guān)于 MathWorks

MathWorks 是數(shù)學計算軟件領(lǐng)域世界領(lǐng)先的開發(fā)商。來自該公司的 MATLAB 被稱為“科學家和工程師的語言”,是一個集算法開發(fā)、數(shù)據(jù)分析、可視化和數(shù)值計算于一體的編程環(huán)境。Simulink 則是一個模塊化建模環(huán)境,面向多域和嵌入式工程系統(tǒng)的仿真和基于模型的設(shè)計。這些產(chǎn)品服務(wù)于全球工程師和科學家,幫助他們加快步伐,在汽車、航空航天、通信、電子、工業(yè)自動化及其他各行各業(yè)更快地實現(xiàn)發(fā)明、創(chuàng)新和開發(fā)。MATLAB 和 Simulink 產(chǎn)品是全球眾多頂級大學和學術(shù)機構(gòu)的基本教研工具。MathWorks 創(chuàng)建于 1984 年,總部位于美國馬薩諸塞州的內(nèi)蒂克市(Natick, Massachusetts),在全球擁有 34 個分支機構(gòu),共有 6,000 多名員工。

       原文標題 : 人工智能安全關(guān)鍵型系統(tǒng)中的驗證和確認

聲明: 本文系OFweek根據(jù)授權(quán)轉(zhuǎn)載自其它媒體或授權(quán)刊載,目的在于信息傳遞,并不代表本站贊同其觀點和對其真實性負責,如有新聞稿件和圖片作品的內(nèi)容、版權(quán)以及其它問題的,請聯(lián)系我們。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個字

您提交的評論過于頻繁,請輸入驗證碼繼續(xù)

暫無評論

暫無評論

人工智能 獵頭職位 更多
掃碼關(guān)注公眾號
OFweek人工智能網(wǎng)
獲取更多精彩內(nèi)容
文章糾錯
x
*文字標題:
*糾錯內(nèi)容:
聯(lián)系郵箱:
*驗 證 碼:

粵公網(wǎng)安備 44030502002758號