侵權(quán)投訴
訂閱
糾錯
加入自媒體

深度學(xué)習(xí)對自動駕駛汽車意味著什么?

by  Naveen Joshi

自動駕駛汽車中使用深度學(xué)習(xí)可以幫助克服各種挑戰(zhàn),例如了解行人的行為,找到最短的路線以及對人和物體進行準(zhǔn)確檢測。

根據(jù)一份報告,2018年約有80%的道路交通事故是由于人為錯誤造成的。因此,將自動駕駛汽車納入主流的主要目標(biāo)之一是消除對人類駕駛員的需求并減少道路致死率。使用自動駕駛汽車進行的實驗無疑表明在一定程度上減少了道路傷亡人數(shù)。

但是,仍然有很多人經(jīng)?吹接嘘P(guān)自動駕駛汽車事故的新聞,例如Uber自動駕駛汽車事故在美國亞利桑那州撞死了一名行人。發(fā)生事故的原因據(jù)說是自動駕駛汽車無法準(zhǔn)確檢測和識別行人。為了最大程度地減少此類事故,需要對自動駕駛車輛進行大量的訓(xùn)練,以準(zhǔn)確檢測其路線中是否存在人員和任何其他物體,這就是深度學(xué)習(xí)的介入。自動駕駛汽車的深度學(xué)習(xí)可以幫助他們有效地分類和檢測道路和周圍環(huán)境中的人或物體。

深度學(xué)習(xí)是機器學(xué)習(xí)的一個子集,它使用人工神經(jīng)網(wǎng)絡(luò)來模仿人腦的復(fù)雜功能。深度學(xué)習(xí)可以在沒有任何人工干預(yù)的情況下更準(zhǔn)確地對對象進行分類。例如,假設(shè)有兩個人寫數(shù)字九(9),但是他們兩個人都以不同的方式寫數(shù)字(一個人寫9,其他人寫一個nine,底部沒有清晰的曲線)。除非掌握了所有可能的寫數(shù)字九的方法,否則深度學(xué)習(xí)網(wǎng)絡(luò)以外的AI算法將很難檢測到,盡管形狀不同,但兩個數(shù)字都代表九。借助深度神經(jīng)網(wǎng)絡(luò)進行的深度學(xué)習(xí)可以輕松地將兩個數(shù)字都識別為9。深度學(xué)習(xí)準(zhǔn)確地對不同對象進行分類的能力可以解決自動駕駛汽車面臨的一些主要挑戰(zhàn)。

自動駕駛汽車深度學(xué)習(xí)如何應(yīng)對某些挑戰(zhàn)

機器學(xué)習(xí)算法在訓(xùn)練自動駕駛汽車時面臨特征提取的問題。特征提取要求程序員告訴算法他們應(yīng)該尋找什么來做出決策。因此,機器學(xué)習(xí)算法的決策能力在很大程度上取決于程序員的洞察力。深度學(xué)習(xí)的功能有所不同,消除了特征提取的問題,從而使深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的檢測和決策更加準(zhǔn)確。深度學(xué)習(xí)可以提高檢測道路上障礙物的準(zhǔn)確性和更好的決策能力,可以幫助應(yīng)對自動駕駛汽車面臨的許多挑戰(zhàn)。

了解復(fù)雜的交通行為

駕駛是一個過程,涉及與其他駕駛員和行人的復(fù)雜互動。例如,如果騎自行車人打算轉(zhuǎn)彎,那么他或她將做出手勢示意,以通知附近的其他駕駛員。然后,駕駛員可以放慢其車輛的速度,從而允許騎自行車的人轉(zhuǎn)彎。人類依賴于通用智能來進行這種社交互動。而且,通過深度學(xué)習(xí),自動駕駛汽車現(xiàn)在很有可能與其他駕駛員和行人進行社交互動。深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)可以幫助自動駕駛汽車檢測其他駕駛員和行人給出的導(dǎo)航信號,并采取適當(dāng)措施避免發(fā)生任何碰撞。

在極端天氣條件下檢測招牌

自動駕駛汽車面臨的另一個主要挑戰(zhàn)是極端天氣條件。盡管這是任何技術(shù)都無法完全解決的環(huán)境挑戰(zhàn),但深度學(xué)習(xí)可以解決極端氣候下的問題。例如,在降雪期間,道路上的招牌可能會被雪覆蓋。而且,降雪后的一段時間內(nèi),招牌可能僅部分可見。使用其他AI算法,自動駕駛汽車將很難理解招牌上的半個標(biāo)志。但是借助神經(jīng)網(wǎng)絡(luò)進行的深度學(xué)習(xí)可以從招牌上的部分可見標(biāo)志創(chuàng)建完整標(biāo)志的圖像。神經(jīng)網(wǎng)絡(luò)將不完整的符號發(fā)送到神經(jīng)層,然后將其傳遞給隱藏層,以確定完整的符號應(yīng)該是什么。基于輸出,神經(jīng)網(wǎng)絡(luò)可以根據(jù)招牌上的標(biāo)志做出決策。

尋找最短的旅行路線

地球上的所有動物,包括人類在內(nèi),都可以在周圍環(huán)境中導(dǎo)航并靈活地探索新區(qū)域。由于神經(jīng)回路的空間行為,它們的導(dǎo)航成為可能。動物的大腦通過在規(guī)則的六邊形網(wǎng)格中繪制周圍環(huán)境來導(dǎo)航。這些六角形圖案有助于導(dǎo)航,類似于地圖中的網(wǎng)格線。神經(jīng)模式支持基于矢量的導(dǎo)航的假設(shè)。基于矢量的導(dǎo)航使大腦可以計算到所需位置的距離和方向。

可以使用基于矢量的導(dǎo)航功能來訓(xùn)練深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),以找到從點A到點B的最短路徑。通過將動物大腦使用的相同網(wǎng)格線模式嵌入第一層,深度學(xué)習(xí)可以計算距離和到達目的地的方向。具有基于矢量的導(dǎo)航和深度學(xué)習(xí)功能的自動駕駛汽車還可以檢測到任何新近可用的快捷方式的存在,以減少出行時間。

深度學(xué)習(xí)本身還需要克服諸多挑戰(zhàn)

盡管自動駕駛汽車有很多好處,但僅憑深度學(xué)習(xí)就無法使自動駕駛汽車成為最高級最智能的交通工具,因為阻礙自動駕駛汽車走向主流發(fā)展的障礙很多。借助深度學(xué)習(xí),檢測對象的準(zhǔn)確性確實會提高,但要付出大量數(shù)據(jù)的代價;跀(shù)據(jù)表示的深度學(xué)習(xí)功能。數(shù)據(jù)在神經(jīng)網(wǎng)絡(luò)的不同層上表示,然后根據(jù)數(shù)據(jù)模式導(dǎo)出輸出。由于深度學(xué)習(xí)的完整功能是基于數(shù)據(jù)的,因此與其他AI算法相比,訓(xùn)練神經(jīng)網(wǎng)絡(luò)需要更多數(shù)據(jù),因此很難創(chuàng)建用于訓(xùn)練它們的數(shù)據(jù)集。而且,收集訓(xùn)練神經(jīng)網(wǎng)絡(luò)所需的數(shù)據(jù)也非常耗時。

使用深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的另一個挑戰(zhàn)是它們的黑匣子問題。如果程序做出了決定,則程序員可以撤消該決定,以找出程序做出該決定的原因。但是,深度學(xué)習(xí)不是可追溯的系統(tǒng),而是在隱藏層中處理數(shù)據(jù)。開發(fā)人員只能找到輸入到神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)及其輸出。但是,他們無法找出隱藏層中進行了哪些處理來做出決定。因此,很難知道深度學(xué)習(xí)網(wǎng)絡(luò)失敗的原因,因為沒有人可以追溯到發(fā)生失敗的地方。

有時,深度學(xué)習(xí)網(wǎng)絡(luò)甚至無法實現(xiàn)其本來打算完成的任務(wù)。神經(jīng)網(wǎng)絡(luò)很難像在不同的視頻幀中一樣在小圖像變換中進行概括。例如,根據(jù)一項研究,深卷積網(wǎng)絡(luò)將狒狒或貓鼬標(biāo)記為相同的北極熊,具體取決于背景的微小變化。

無人駕駛汽車是一項實驗,至今尚無人知道結(jié)果如何。自動駕駛汽車深度學(xué)習(xí)能否將其驅(qū)動到主流交通工具取決于技術(shù)如何進一步發(fā)展。即使克服了深度學(xué)習(xí)的挑戰(zhàn),自動駕駛汽車的方式也存在其他障礙。這些汽車與IoT設(shè)備等多種技術(shù)集成在一起,以收集數(shù)據(jù),云計算以處理數(shù)據(jù),以及5G以提高數(shù)據(jù)傳輸速度。一旦這些技術(shù)能夠有效地協(xié)同工作,以建立良好的交通生態(tài)系統(tǒng),自動駕駛汽車就能成為主流。(編譯/蒙光偉)

編輯:N來源:千家網(wǎng)

聲明: 本文系OFweek根據(jù)授權(quán)轉(zhuǎn)載自其它媒體或授權(quán)刊載,目的在于信息傳遞,并不代表本站贊同其觀點和對其真實性負(fù)責(zé),如有新聞稿件和圖片作品的內(nèi)容、版權(quán)以及其它問題的,請聯(lián)系我們。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個字

您提交的評論過于頻繁,請輸入驗證碼繼續(xù)

暫無評論

暫無評論

文章糾錯
x
*文字標(biāo)題:
*糾錯內(nèi)容:
聯(lián)系郵箱:
*驗 證 碼:

粵公網(wǎng)安備 44030502002758號