大數(shù)據(jù)在癌癥研究中的應用現(xiàn)狀和未來挑戰(zhàn)!
前言
癌癥是一種非常復雜的疾病,其進展涉及患者體內(nèi)的多種生物進程。因此,癌癥研究產(chǎn)生了大量的分子和表型數(shù)據(jù),在高通量技術突破的推動下,組學數(shù)據(jù)的快速積累產(chǎn)生了癌癥“大數(shù)據(jù)”的概念。其定義為具有兩個基本屬性的數(shù)據(jù)集:首先,它包含豐富的信息;其次,它的分析需要大量的計算資源,并可能為基本問題帶來新的見解。
大數(shù)據(jù)并非癌癥領域獨有,在許多科學學科中發(fā)揮著重要作用。然而,癌癥領域的數(shù)據(jù)集在幾個關鍵方面不同于其他領域。首先,癌癥數(shù)據(jù)集的大小通常明顯更小。其次,癌癥研究數(shù)據(jù)通常是異構(gòu)的,可能包含許多測量細胞系統(tǒng)和生物過程不同方面的維度。由于每種模式的數(shù)據(jù)量相對有限,而且它們之間存在高度的異質(zhì)性,因此需要開發(fā)創(chuàng)新的計算方法來整合不同維度和隊列的數(shù)據(jù)。
隨著數(shù)據(jù)的不斷積累和技術進步,大數(shù)據(jù)、生物信息學和人工智能的結(jié)合將使我們對癌癥生物學的基本理解和臨床轉(zhuǎn)化發(fā)生顯著進步。這需要科學家、臨床醫(yī)生、生物學家和決策者的共同努力。
通用數(shù)據(jù)類型
癌癥研究中有五種基本數(shù)據(jù)類型:分子組學數(shù)據(jù)、擾動表型數(shù)據(jù)、分子相互作用數(shù)據(jù)、成像數(shù)據(jù)和文本數(shù)據(jù)。分子組學數(shù)據(jù)描述細胞系統(tǒng)和組織樣本中分子的豐度或狀態(tài)。這些數(shù)據(jù)是癌癥研究中從患者或臨床前樣本中產(chǎn)生的最豐富的類型,包括關于DNA突變(基因組學)、染色質(zhì)或DNA狀態(tài)(表觀基因組學)、蛋白質(zhì)豐度(蛋白質(zhì)組學)、轉(zhuǎn)錄物豐度(轉(zhuǎn)錄組學)和代謝物豐度的信息。
擾動表型數(shù)據(jù)描述了細胞表型(如細胞增殖或標記蛋白豐度)在基因水平抑制、擴增或藥物治療后如何改變。常見的表型實驗包括使用CRISPR敲除、干擾或激活的擾動篩選;RNA干擾;開放閱讀框的過度表達;或用藥物文庫處理。
分子相互作用數(shù)據(jù)描述了分子與其它不同分子相互作用的潛在功能。常見的分子相互作用數(shù)據(jù)類型包括蛋白質(zhì)-DNA相互作用、蛋白質(zhì)-RNA相互作用、蛋白質(zhì)-蛋白質(zhì)相互作用和3D染色體相互作用。與擾動表型數(shù)據(jù)類似,分子相互作用數(shù)據(jù)集通常使用細胞系生成,因為它們的生成需要大量的材料,這些材料通常超過從臨床樣品中獲得的材料。
此外,臨床數(shù)據(jù)如健康記錄、組織病理學圖像和放射學圖像也具有相當大的價值。
數(shù)據(jù)存儲和分析平臺
癌癥研究的關鍵數(shù)據(jù)資源,可以分為三類。第一類包括來自系統(tǒng)生成數(shù)據(jù)項目的資源,例如TCGA生成了10000多個癌癥基因組的轉(zhuǎn)錄組學、蛋白質(zhì)組學、基因組學和表觀基因組學數(shù)據(jù),并匹配了33種癌癥類型的正常樣本。第二類描述了展示來自上述項目的已處理數(shù)據(jù)的存儲庫,如基因組數(shù)據(jù)共享區(qū),它托管TCGA數(shù)據(jù)供下載。第三類包括Web應用程序,這些應用程序系統(tǒng)地集成了不同項目的數(shù)據(jù),并提供交互式分析模塊。例如,TIDE框架系統(tǒng)地收集了來自免疫腫瘤學研究的公共數(shù)據(jù),并提供了互動模塊,以研究腫瘤免疫逃逸和免疫治療反應的途徑和調(diào)節(jié)機制。
大數(shù)據(jù)在癌癥基礎研究中的應用
目前,癌癥研究的數(shù)據(jù)規(guī)模仍遠遠落后于計算機的其他領域。跨隊列聚合和跨模態(tài)集成可顯著增強大數(shù)據(jù)分析的穩(wěn)健性和深度。
跨隊列數(shù)據(jù)聚合
整合來自多個中心或研究的數(shù)據(jù)集可以獲得更穩(wěn)健的結(jié)果和潛在的新發(fā)現(xiàn),特別是在個別數(shù)據(jù)集有噪聲、不完整或帶有某些人為因素的情況下?珀犃袛(shù)據(jù)聚合的一個里程碑是發(fā)現(xiàn)TMPRSS2–ERG融合和TMPRSS2-ETV1融合是前列腺癌的致癌驅(qū)動因素。通過對代表10486個微陣列實驗的132個基因表達數(shù)據(jù)集的分析,首先確定ERG和ETV1在六個獨立的前列腺癌隊列內(nèi)是高表達基因,進一步的研究確定它們與TMPRSS2的融合是ERG和ET V1過度表達的原因。另一個例子是對許多臨床數(shù)據(jù)集的腫瘤免疫逃逸的綜合研究,該研究表明SERPINB9表達與腫瘤內(nèi)T細胞功能障礙和對免疫檢查點阻斷的抵抗相關。進一步研究發(fā)現(xiàn),SERPINB9激活是癌細胞和免疫抑制細胞對免疫檢查點阻斷產(chǎn)生抵抗的機制。
跨模態(tài)數(shù)據(jù)集成
不同數(shù)據(jù)類型的跨模態(tài)集成是一種有希望和有成效的方法,可以最大化從數(shù)據(jù)中獲得的信息,因為每個數(shù)據(jù)類型中嵌入的信息通常是協(xié)同和互補的?缒B(tài)數(shù)據(jù)集成的例子包括TCGA等項目,該項目提供基因組學、轉(zhuǎn)錄組學、同一組腫瘤的表觀基因組學和蛋白質(zhì)組學數(shù)據(jù)?缒B(tài)整合帶來了許多關于癌癥進展相關因素的新見解。例如,EGFR信號通路中蛋白質(zhì)的磷酸化狀態(tài)與頭頸癌中編碼EGFR配體的基因的高表達相關,而與受體的表達和磷酸化水平無關,這表明患者應根據(jù)配體豐度而不是受體狀態(tài)分層接受抗EGFR治療。
利用現(xiàn)有數(shù)據(jù)的知識轉(zhuǎn)化
此外,可以利用現(xiàn)有數(shù)據(jù)進行新的發(fā)現(xiàn)。例如,細胞分數(shù)去卷積技術可以推斷出腫瘤轉(zhuǎn)錄組學中單個細胞類型的組成。這些方法通常從許多現(xiàn)有數(shù)據(jù)集中收集不同細胞類型的基因表達譜,并進行回歸或特征富集分析,以在體腫瘤表達譜中分析細胞片段或譜系的特異性表達。
數(shù)據(jù)轉(zhuǎn)化還可以幫助開發(fā)新的實驗測試。例如,現(xiàn)有腫瘤全外顯子組測序數(shù)據(jù)用于優(yōu)化循環(huán)腫瘤DNA測定,通過最大化每個患者檢測到的改變數(shù)量,同時最小化基因和區(qū)域選擇大小。通過檢測從多個腫瘤區(qū)域或不同腫瘤部位釋放的DNA的變化,由此產(chǎn)生的循環(huán)腫瘤DNA測定可提供治療抗性和癌癥復發(fā)和轉(zhuǎn)移的綜合視圖。
大數(shù)據(jù)在臨床轉(zhuǎn)化研究中的應用
許多臨床診斷和決定,如組織病理學解釋,本質(zhì)上是主觀的,依賴于醫(yī)生的經(jīng)驗或標準化診斷術語和分類法的可用性。這些主觀因素可能會導致解釋錯誤和診斷差異,大數(shù)據(jù)方法可以提供系統(tǒng)和客觀的補充選項,以指導診斷和臨床決策。
從數(shù)據(jù)隊列中分析診斷生物標志物
從大數(shù)據(jù)中分析診斷生物標志物,一些早期例子包括雌激素受體(ER)或孕激素受體(PR)陽性乳腺癌患者的預后分析,如Oncotype DX、MammaPrint、EndoPredict和Prosigna。這些測試特別有用,因為單獨的輔助內(nèi)分泌治療可以為ER/PR陽性、HER2陰性的早期乳腺癌患者帶來足夠的臨床益處。分層為低風險的患者可以避免不必要的額外化療。其他癌癥類型的預測因子包括結(jié)腸癌和前列腺癌的Oncotype DX和早期肺癌的Pervenio。
分子數(shù)據(jù)指導的臨床試驗
全基因組和多模式數(shù)據(jù)已開始在前瞻性多組臨床試驗中起到匹配患者的作用,特別是那些研究精準治療的試驗。例如,WINTHER試驗根據(jù)來自實體腫瘤活檢的DNA測序或RNA表達數(shù)據(jù),前瞻性匹配晚期癌癥患者接受治療。WINTHER研究得出結(jié)論,這兩種數(shù)據(jù)類型對于改善治療和患者預后都很有價值。
其他類似的試驗也已經(jīng)證明,基于全基因組基因組學或轉(zhuǎn)錄組學數(shù)據(jù)匹配患者使用靶向治療的效用。在這些研究中,接受組學數(shù)據(jù)匹配治療的入選患者比例從19%到37%,在這些匹配的患者中,約三分之一的患者表現(xiàn)出顯著的臨床益處。
隨著這些初步的成功,新興的臨床研究旨在收集大量樣本序列之外的額外數(shù)據(jù),如各種藥物治療后的腫瘤細胞死亡反應或患者樣本中收集的scRNA序列數(shù)據(jù),以研究治療反應和耐藥性機制。可以預期,新的數(shù)據(jù)模式和分析將為臨床試驗設計提供新的方法。
用于癌癥診斷的人工智能
目前,很多臨床診斷中的數(shù)據(jù)類型,如成像數(shù)據(jù)或文本報告,可能無法與樣本之間直接對接。基于深度神經(jīng)網(wǎng)絡的人工智能方法是一種新興的方法,可以將這些數(shù)據(jù)類型集成到臨床應用中。
人工智能在分析成像數(shù)據(jù)方面最常用的應用包括臨床結(jié)果預測和腫瘤檢測,以及根據(jù)HE染色的組織進行分級。2021 9月,F(xiàn)DA批準使用人工智能軟件Paige Prostate來協(xié)助病理學家從前列腺穿刺的活檢樣本中檢測癌癥區(qū)域。這一批準反映了組織病理學圖像上人工智能應用的加速勢頭。
除了組織病理學,放射學是人工智能成像分析的另一個應用。使用3D計算機斷層掃描的深度卷積神經(jīng)網(wǎng)絡已顯示出預測肺癌風險的準確性與經(jīng)驗豐富的放射科醫(yī)生的預測相當,卷積神經(jīng)網(wǎng)絡可以使用計算機斷層掃描數(shù)據(jù)對肺癌患者的生存期進行分層,并強調(diào)腫瘤周圍組織在風險分層中的重要性。
人工智能也開始在分析電子健康記錄方面發(fā)揮重要作用。除圖像和健康記錄外,在其他數(shù)據(jù)類型上訓練的人工智能也具有廣泛的臨床應用,如通過液體活組織檢查捕獲無細胞DNA或T細胞受體序列進行早期癌癥檢測,或基于基因組學的癌癥風險預測。
大數(shù)據(jù)分析輔助新療法開發(fā)
開發(fā)新藥成本高、周期長且失敗率高。新療法的開發(fā)是大數(shù)據(jù)應用的一個有前景的方向。一些大數(shù)據(jù)驅(qū)動的臨床前研究已經(jīng)吸引了制藥行業(yè)的注意,可能很快對臨床做出重大貢獻。
大數(shù)據(jù)已被用于幫助現(xiàn)有藥物的再利用,以治療新疾病和設計協(xié)同組合。此外,最近的研究結(jié)合藥理學數(shù)據(jù)和人工智能已用于設計新藥;诂F(xiàn)有DDR1抑制劑和化合物文庫的信息,使用深度生成模型設計抑制受體酪氨酸激酶DDR1的新分子,主要候選物在小鼠中顯示出有利的藥代動力學特征。
AI還可用于目標蛋白質(zhì)結(jié)構(gòu)上生物活性配體的虛擬篩選。卷積神經(jīng)網(wǎng)絡可以全面整合來自先前虛擬篩選研究的訓練數(shù)據(jù),以優(yōu)于基于最小化經(jīng)驗分數(shù)的對接方法。系統(tǒng)評估顯示,使用由分子描述和藥物生物活性組成的大型多樣數(shù)據(jù)集訓練的深度神經(jīng)網(wǎng)絡比其他方法更好地預測了測試分子的活性。
挑戰(zhàn)與未來展望
盡管基于大數(shù)據(jù)的進步令人鼓舞,但在癌癥研究和臨床中的大數(shù)據(jù)應用方面仍存在相當大的挑戰(zhàn)。組學數(shù)據(jù)通常存在隊列間的測量不一致、顯著的批次效應和對特定實驗平臺的依賴性。這種缺乏一致性是臨床轉(zhuǎn)化的主要障礙。關于腫瘤組學數(shù)據(jù)的測量和標準化的共識對于每種數(shù)據(jù)類型都至關重要。除了這些技術挑戰(zhàn)之外,還存在結(jié)構(gòu)性和社會挑戰(zhàn),可能阻礙整個癌癥數(shù)據(jù)科學領域的進步。
不理想的數(shù)據(jù)可用性
癌癥數(shù)據(jù)科學的一個關鍵挑戰(zhàn)是數(shù)據(jù)和代碼的可用性不足。最近的一項研究發(fā)現(xiàn),生物醫(yī)學領域基于機器學習的研究在公共數(shù)據(jù)和源代碼可用性方面與其他領域的研究相比較差。有時,即使在安全和隱私問題得到解決的情況下,也無法提供或完成與公布的癌癥基因組學數(shù)據(jù)相關的臨床信息。這個瓶頸的一個可能原因與數(shù)據(jù)發(fā)布策略和數(shù)據(jù)管理成本有關。
數(shù)據(jù)規(guī)模差距
可用于癌癥治療的數(shù)據(jù)集大幅小于其他領域的數(shù)據(jù)集。造成這種差距的一個原因是,醫(yī)學數(shù)據(jù)的生成依賴于受過專業(yè)培訓的科學家。為了縮小數(shù)據(jù)規(guī)模差距,將需要更多的投資來自動生成某些類型的注釋醫(yī)療數(shù)據(jù)和患者組學數(shù)據(jù)。罕見癌癥尤其缺乏臨床前模型、臨床樣本和專用資金。此外,生物醫(yī)學數(shù)據(jù)的可用性通常受到人群遺傳背景的限制。例如,東亞、歐洲和美國人群中可作用突變的頻率可能不同。
數(shù)據(jù)規(guī)模差距的另一個原因是癌癥臨床和生物學研究缺乏數(shù)據(jù)生成標準。例如,大多數(shù)臨床試驗尚未收集患者的組學數(shù)據(jù)。隨著測序成本的下降,臨床試驗中組學數(shù)據(jù)的收集應顯著擴大,并可能成為強制性標準要求。
小結(jié)
數(shù)據(jù)科學和人工智能正在通過各種各樣的應用改變我們的世界。目前,我們已經(jīng)有了可用的腫瘤數(shù)據(jù),通過跨模式整合、跨隊列聚合和數(shù)據(jù)轉(zhuǎn)化,促進了癌癥的生物醫(yī)學突破,并且在生成和分析此類數(shù)據(jù)方面取得了非凡的進展。然而,大數(shù)據(jù)在該領域的狀態(tài)是相當復雜的,我們應該承認癌癥的“大數(shù)據(jù)”還沒有那么大。全球癌癥研究未來在擴大癌癥數(shù)據(jù)集方面的投入將至關重要,這將有助于更好的推動大數(shù)據(jù)在基礎研究、癌癥診斷和新療法開發(fā)的應用。
參考文獻:
1.Big data in basic and translational cancerresearch. Nat Rev Cancer.2022 Sep 5 : 1–15.
原文標題 : 大數(shù)據(jù)在癌癥研究中的應用現(xiàn)狀和未來挑戰(zhàn)
請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
圖片新聞
最新活動更多
-
2 石藥集團的陽謀
- 高級軟件工程師 廣東省/深圳市
- 自動化高級工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級銷售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術專家 廣東省/江門市
- 封裝工程師 北京市/海淀區(qū)
- 結(jié)構(gòu)工程師 廣東省/深圳市