侵權(quán)投訴
訂閱
糾錯
加入自媒體

智駕行業(yè)BEV+Transformer到端到端“追熱詞”為奪技術(shù)終局優(yōu)勢?

本文來源:智車科技

自去年以來,業(yè)界不斷討論和提及“BEV+Transformer”這一概念,即鳥瞰視圖與基于自注意力機制的神經(jīng)網(wǎng)絡(luò)架構(gòu)。卷了半年時間,今年,“端到端”這一概念又迅速成為人們熱議的焦點。這兩個概念看似截然不同,實則在視覺路線建立的基于Transformer 的架構(gòu)上有著共通之處,也共同印證了人工智能技術(shù)從深度學(xué)習(xí)向多模態(tài)大模型演進的趨勢。汽車領(lǐng)域始終處于自動駕駛技術(shù)革新的前沿。

BEV+Transformer:

鳥瞰視角下的感知革命

BEV+Transformer技術(shù)如同為自動駕駛汽車安裝了一雙“慧眼”,能夠清晰地“看到”周圍的環(huán)境和障礙物,并做出更加準確的判斷。

如果說端到端大模型是自動駕駛領(lǐng)域新晉的“頂流”,那么 BEV+Transformer 可以算得上是它的“前輩”。兩者都是在視覺路線建立了基于Transformer 的架構(gòu)。ChatGPT,其中的“T”即代表了以 Transformer 為基礎(chǔ)的大模型。這種模型通過自注意力機制,能夠更好地處理和理解復(fù)雜的視覺信息,從而在自動駕駛領(lǐng)域發(fā)揮重要作用。BEV+Transformer 架構(gòu)通過鳥瞰視圖,能夠提供更全面、更準確的環(huán)境感知能力,為自動駕駛系統(tǒng)提供更可靠的決策支持。因此,BEV+Transformer可以被視為自動駕駛領(lǐng)域的重要里程碑,為未來的發(fā)展奠定了堅實的基礎(chǔ)。

清華大學(xué)蘇州汽車研究院智能網(wǎng)聯(lián)中心技術(shù)總監(jiān)孫輝先生指出,BEV算法將各類傳感器信息統(tǒng)一映射至世界坐標系中,實現(xiàn)了在不同類型傳感器數(shù)據(jù)的互補。此舉不僅推動了感知融合從后融合階段推進至前融合階段的轉(zhuǎn)變,也為端到端方案奠定了堅實的基礎(chǔ)。隨后,基于BEV算法發(fā)展起來的占據(jù)柵格(Occupancy Grid)算法,進一步增強了對動態(tài)與靜態(tài)障礙物的檢測能力,從而提升了自動駕駛汽車的安全避障功能。端到端自動駕駛方案是在BEV算法基礎(chǔ)上,通過神經(jīng)網(wǎng)絡(luò)將軌跡預(yù)測、柵格地圖預(yù)測、行為規(guī)劃等環(huán)節(jié)疊加,用大數(shù)據(jù)監(jiān)督學(xué)習(xí)取代了傳統(tǒng)復(fù)雜的人工規(guī)則設(shè)計,從而簡化了自動駕駛系統(tǒng)的開發(fā)流程,并提升了迭代效率。

BEV技術(shù)代表著繼深度學(xué)習(xí)之后,自動駕駛領(lǐng)域又一項重大技術(shù)突破。它有效地克服了多傳感器數(shù)據(jù)變化和異構(gòu)性帶來的挑戰(zhàn),促進了融合感知算法的發(fā)展。從理論基礎(chǔ)來看,BEV與傳統(tǒng)感知算法在輸入端并無二致,均采用多通道傳感器信息,但 BEV 的獨特之處在于它能夠直接生成適用于三維空間規(guī)劃和控制的輸出。BEV技術(shù)以二維數(shù)據(jù)為基礎(chǔ),提供了一種俯瞰視角,與SLAM技術(shù)相得益彰,為自動駕駛技術(shù)的進步和實際應(yīng)用開辟了新的道路。

 

端到端方案將 BEV 算法的優(yōu)勢進一步放大,將軌跡預(yù)測、柵格地圖預(yù)測、行為規(guī)劃等環(huán)節(jié)疊加,通過神經(jīng)網(wǎng)絡(luò)將感知、決策和控制過程整合,用大數(shù)據(jù)監(jiān)督學(xué)習(xí)取代傳統(tǒng)的人工規(guī)則設(shè)計,從而簡化開發(fā)流程,提升迭代效率。更接近人類駕駛員的駕駛風(fēng)格,更容易實現(xiàn)更自然的駕駛行為。

端到端:智能駕駛的主流趨勢

端到端技術(shù)如同為自動駕駛汽車打造了一個“大腦”,使其能夠像人類一樣,自主地學(xué)習(xí)和思考,并做出更加靈活的駕駛決策。

目前大多數(shù)L4級無人駕駛系統(tǒng)仍依賴于“算法+規(guī)則”的執(zhí)行模式,通過地圖、攝像頭、激光雷達等多種傳感器和算法的冗余配置來確保安全。但這種模式在處理復(fù)雜多變的交通環(huán)境時顯得力不從心,難以解決所有長尾問題。因此,無人駕駛技術(shù)仍需不斷優(yōu)化和完善,而“端到端”模型的出現(xiàn)或許將為這一領(lǐng)域帶來新的突破,加速技術(shù)成熟度的提升,從而解決當前存在的問題。“算法+規(guī)則”與端到端技術(shù)的融合將成為主流趨勢。

端到端,就像價格戰(zhàn)一樣,成為車企“內(nèi)卷”的又一個方向。

在2023年下半年,各大汽車制造商紛紛采納以BEV和Transformer技術(shù)為核心的策略,致力于實施以“輕地圖、重感知”為特點的城市級自動駕駛導(dǎo)航系統(tǒng)(NOA)的落地計劃。然而,隨著2024年特斯拉FSD V12版本的推出,標志著端到端方案在實際應(yīng)用中取得了突破。市場趨勢轉(zhuǎn)向了更為重視感知能力的端到端解決方案,這標志著智能駕駛技術(shù)發(fā)展的下一階段。

FSD Beta V12號稱是迄今為止首個完全由人工智能實現(xiàn)的端到端自動駕駛系統(tǒng)。該系統(tǒng)從識別道路、行人等概念到?jīng)Q策過程,均未涉及傳統(tǒng)編程,亦無程序員編寫任何代碼。整個過程完全依賴于神經(jīng)網(wǎng)絡(luò)的自主思考。相較于V11版本的30萬行代碼,F(xiàn)SD Beta V12的C++代碼縮減至僅2000行。該系統(tǒng)通過向神經(jīng)網(wǎng)絡(luò)提供視頻資料,使其不斷學(xué)習(xí)和優(yōu)化參數(shù),從而通過分析數(shù)十億幀人類駕駛的視頻資料,自學(xué)掌握了駕駛技能。

隨著新機遇的出現(xiàn),國內(nèi)企業(yè)積極擁抱變革,引領(lǐng)“端到端”自動駕駛技術(shù)的上車浪潮。

小鵬汽車于2024年5月20日宣布其“端到端”大模型由神經(jīng)網(wǎng)絡(luò)XNet、規(guī)控大模型XPlaner及大語言模型XBrain三大核心部分構(gòu)成,并宣稱“未來 10 年是智能駕駛的 10 年,完全自動駕駛和全無人駕駛時代即將到來,而率先實現(xiàn)端到端大模型上車的小鵬汽車,將于 2025 年在中國實現(xiàn)類 L4 級智駕體驗。”。據(jù)官方聲明,智能駕駛能力提升兩倍。從現(xiàn)有的架構(gòu)升級至端到端后,傳感器輸入的數(shù)據(jù)能夠直接轉(zhuǎn)化為車輛的控制動作,端到端的訓(xùn)練也從圖片升級至視頻。在系統(tǒng)層面,此舉能夠減少車輛在某些場景下的決策遲疑。

在2024年北京車展上,元戎啟行推出的新一代量產(chǎn)的高階智駕平臺DeepRoute IO,宣稱搭載了端到端模型,成為目前已知的行業(yè)內(nèi)首個將端到端技術(shù)應(yīng)用于高階智能駕駛汽車量產(chǎn)的公司。在導(dǎo)航地圖所覆蓋的區(qū)域內(nèi),DeepRoute IO平臺能夠?qū)崿F(xiàn)對交通信號燈、施工區(qū)域、緩慢行駛或臨時停車等場景的及時、精確和穩(wěn)定地識別,從而確保在城市環(huán)境中實現(xiàn)從一點到另一點的智能駕駛,在導(dǎo)航地圖覆蓋區(qū)域內(nèi),能夠?qū)崿F(xiàn)安全、順暢的智能駕駛。

理想汽車董事長兼首席執(zhí)行官李想在 2024 中國汽車重慶論壇上,提出了自動駕駛技術(shù)路線的新構(gòu)想:“端到端”+VLM(視覺語言模型)+生成式驗證系統(tǒng),確實是一套非常有前瞻性的技術(shù)架構(gòu),這一技術(shù)路線被視為未來物理世界機器人技術(shù)的核心框架。截至目前,理想汽車尚未公開發(fā)布具體的“端到端”自動駕駛技術(shù)細節(jié)。雖然理想汽車的自動駕駛系統(tǒng)(理想AD Max)具備一些功能,例如高速NOA、城市NOA、記憶泊車等,但其是否完全采用端到端技術(shù),以及具體的技術(shù)細節(jié),都尚未得到官方的明確確認。

未來展望

端到端作為一種技術(shù)路徑,能夠得到車企客戶和消費者的關(guān)注,其原因在于該技術(shù)能夠顯著提升用戶體驗。端到端技術(shù)能夠顯著增強系統(tǒng)的安全性,對于自動駕駛中那些難以用語言描述的復(fù)雜場景,端到端技術(shù)在實際應(yīng)用中展現(xiàn)了出色的應(yīng)對能力。此外,端到端系統(tǒng)使得駕駛行為更加貼近人類,更類似于人類駕駛員的風(fēng)格,這有助于自動駕駛系統(tǒng)與用戶之間建立信任關(guān)系。

那些跑通端到端大模型的車企,無疑搶先站上了“風(fēng)口”,但端到端真正量產(chǎn)還有很長的路要走。目前,數(shù)據(jù)稀缺是困擾高級別自動駕駛落地,尤其是影響端到端效果的重要課題。有專家分析認為國內(nèi)自動駕駛公司的模塊化端到端方案上車量產(chǎn)時間可能會在2025年。

許多企業(yè)將主要目標定位于L2+級自動駕駛的商業(yè)化實施,暫緩了L4級自動駕駛的直接實現(xiàn)。今年伊始,多家汽車制造商開始了城市級導(dǎo)航輔助駕駛(NOA)的“速度競賽”,競相推廣以“極致性價比”為賣點的高級智能駕駛解決方案。

在這一進程中,無論是“端到端”的解決方案,還是基于BEV+Transformer模型的技術(shù),都在為自動駕駛的發(fā)展提供支持;同時,日益豐富的車輛行駛數(shù)據(jù)也在不斷促進自動駕駛?cè)斯ぶ悄芗夹g(shù)的日趨成熟。

免責(zé)聲明:

凡本公眾號注明“來源:XXX(非智車科技)”的作品,均轉(zhuǎn)載自其它媒體,轉(zhuǎn)載目的在于傳遞和分享更多信息,并不代表本平臺贊同其觀點和對其真實性負責(zé),版權(quán)歸原作者所有,如有侵權(quán)請聯(lián)系我們刪除。

       原文標題 : 智駕行業(yè)BEV+Transformer到端到端“追熱詞”為奪技術(shù)終局優(yōu)勢?

聲明: 本文由入駐維科號的作者撰寫,觀點僅代表作者本人,不代表OFweek立場。如有侵權(quán)或其他問題,請聯(lián)系舉報。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個字

您提交的評論過于頻繁,請輸入驗證碼繼續(xù)

暫無評論

暫無評論

文章糾錯
x
*文字標題:
*糾錯內(nèi)容:
聯(lián)系郵箱:
*驗 證 碼:

粵公網(wǎng)安備 44030502002758號