侵權(quán)投訴
訂閱
糾錯(cuò)
加入自媒體

叫好不叫座,AI醫(yī)療“卡脖子”難題如何破解?

2023-10-13 14:05
適道
關(guān)注

一直以來(lái),醫(yī)療行業(yè)都被視為AI應(yīng)用的最佳場(chǎng)景之一。在上一輪AI+醫(yī)療浪潮中,人工智能的應(yīng)用主要集中在影像領(lǐng)域。那么,在本輪AIGC浪潮中, AI醫(yī)療是否迎來(lái)了新的突破口?

近日,紅杉資本發(fā)布了一篇名為《Generative AI in Healthcare》的報(bào)告。其中提到,目前AI能夠很好地處理患者互動(dòng)、文檔記錄、預(yù)授權(quán)、編碼和收入周期管理等環(huán)節(jié),例如將醫(yī)生和患者的對(duì)話,自動(dòng)轉(zhuǎn)化為電子病歷和編碼等等。紅杉資本認(rèn)為,現(xiàn)在的AI開(kāi)始滲透到醫(yī)療行業(yè)的多個(gè)環(huán)節(jié),從而大大提高醫(yī)療領(lǐng)域的效率和質(zhì)量,降低成本和人力。

那么,除了處理這些看起來(lái)不夠前沿的非結(jié)構(gòu)性數(shù)據(jù),醫(yī)療行業(yè)的“卡脖子”領(lǐng)域——醫(yī)療診斷,在這一輪人工智能浪潮中,能否獲得新的解決方案?又有哪些難點(diǎn)?近日,華爾街日?qǐng)?bào)發(fā)布的一篇文章《Can AI Help Doctors Come Up With Better Diagnoses?》給出了一些答案。文章作者為L(zhǎng)aura Landro,她專(zhuān)注于醫(yī)學(xué)與健康領(lǐng)域方面寫(xiě)作,出版過(guò)書(shū)籍《幸存者:控制你與癌癥的斗爭(zhēng)》等。適道對(duì)原文內(nèi)容進(jìn)行了縮寫(xiě)和補(bǔ)充,以下是正文。

1

準(zhǔn)確性是永遠(yuǎn)的痛點(diǎn)

第一,AI無(wú)法取代醫(yī)生經(jīng)驗(yàn)。雖然生成式AI能提出診斷建議,并提示醫(yī)生:患者可能出現(xiàn)的病情趨勢(shì)。但在臨床實(shí)踐中,除了一張冷冰冰的體檢報(bào)告,醫(yī)生還要和患者面對(duì)面交流,通過(guò)望聞問(wèn)切、建立聯(lián)系、獲取信任,從細(xì)微之處察覺(jué)患者的病情起因發(fā)展,排查不符合邏輯的事實(shí)。

例如,在肥胖門(mén)診中,很多病人會(huì)隱瞞自己的真實(shí)飯量。醫(yī)生可以環(huán)環(huán)追問(wèn),推測(cè)出病人實(shí)際的飲食和運(yùn)動(dòng)情況,從而給出合理的治療方案。但如果將這些“說(shuō)謊的病人”交給AI,它大概率會(huì)陷入錯(cuò)亂。

第二,AI會(huì)“胡編亂造”診斷書(shū)。如果說(shuō)ChatGPT自創(chuàng)參考文獻(xiàn)勉強(qiáng)算得上可愛(ài),那么當(dāng)它開(kāi)始自創(chuàng)診斷書(shū),就是可怕了。

英國(guó)的一項(xiàng)研究發(fā)現(xiàn): 聊天式AI漏掉重要診斷的概率高達(dá)60%,而這些診斷往往會(huì)危及生命,也是每個(gè)經(jīng)驗(yàn)豐富的臨床醫(yī)生最關(guān)心的問(wèn)題。

顯然,大部分患者也對(duì)AI醫(yī)生也是將信將疑。在一項(xiàng)針對(duì)美國(guó)成年人的調(diào)查中,66%的女性和54%的男性都不太放心AI提供的醫(yī)療服務(wù)。

Source: Pew Research Center, survey conducted Dec. 12-18, 2022

2

解決數(shù)據(jù)問(wèn)題=解決一大半難題

為防止診斷出現(xiàn)誤差,一些基于特定任務(wù)而開(kāi)發(fā)的模型被應(yīng)用在醫(yī)療領(lǐng)域。

例如,梅奧診所(Mayo clinic)設(shè)計(jì)了一種可以檢測(cè)心房顫動(dòng)(AFib)跡象的算法,醫(yī)生只需點(diǎn)擊嵌入梅奧電子健康記錄中的AI儀表板,即可查看所有檢查心電圖患者的情況。

哈佛大學(xué)和麻省理工學(xué)院的一項(xiàng)聯(lián)合研究發(fā)現(xiàn),在胸部X光檢查中,AI的表現(xiàn)比66%了解患者病史的放射科醫(yī)生更為準(zhǔn)確。

上述這兩種模型有助于評(píng)估風(fēng)險(xiǎn),幫助醫(yī)生進(jìn)行下一步檢查和治療。但它們只能執(zhí)行由訓(xùn)練數(shù)據(jù)集及標(biāo)簽預(yù)先定義的任務(wù),在臨床實(shí)踐中無(wú)法完成其他任務(wù),靈活性很差。

那么,AI診斷的擔(dān)子就落在了更為靈活的大模型上,它們能否勝任?

雖然,在大模型下,AI診斷不再是只給出簡(jiǎn)單的結(jié)果,它也可以像專(zhuān)家一樣,跟醫(yī)生進(jìn)行深度討論;大模型帶來(lái)的人機(jī)自然語(yǔ)言無(wú)障礙交互,也可以調(diào)動(dòng)多種能力解決多個(gè)場(chǎng)景的問(wèn)題。

不過(guò)也正如上文所舉的第二個(gè)例子, 大模型“胡編亂造”的能力是阻礙其在醫(yī)療領(lǐng)域應(yīng)用的一大絆腳石。

但這個(gè)問(wèn)題也不是不能解決。

首先,技術(shù)的進(jìn)步可以大大改善現(xiàn)狀。

就像第一次工業(yè)革命時(shí)期,世界上第一輛火車(chē)跑不過(guò)馬車(chē),唱衰大模型醫(yī)療診斷還為時(shí)過(guò)早。

例如,斯坦福大學(xué)的研究人員發(fā)現(xiàn),在回答一些臨床推理問(wèn)題時(shí),GPT-4穩(wěn)贏大二的醫(yī)學(xué)生,它不僅比GPT-3.5準(zhǔn)得多,甚至沒(méi)有一本正經(jīng)地胡說(shuō)八道。OpenAI表示,雖然GPT-4生成事實(shí)內(nèi)容的可能性比GPT-3.5高出來(lái) 40%,但要進(jìn)一步降低出現(xiàn)“幻覺(jué)”,還有很多工作要做。雖然我們不知道要做哪些工作,但至少情況會(huì)變得更好。

其次,解決數(shù)據(jù)問(wèn)題,就能解決一大半難題。

模型的好壞取決于人類(lèi)喂給它的數(shù)據(jù)。這些數(shù)據(jù)依賴(lài)于人類(lèi)的反饋結(jié)果,本身就可能帶有濃重的主觀色彩,并非客觀準(zhǔn)確。而當(dāng)“不夠好”的數(shù)據(jù)充斥其中,人工智能模型賴(lài)以生存的良性循環(huán)模式(飛輪效應(yīng))也就玩不轉(zhuǎn)了。

一方面,大型、多樣化的醫(yī)療數(shù)據(jù)集難以獲取。從當(dāng)前來(lái)看,國(guó)內(nèi)大部分醫(yī)療數(shù)據(jù)存儲(chǔ)于各級(jí)醫(yī)療機(jī)構(gòu),業(yè)務(wù)系統(tǒng)相對(duì)獨(dú)立,數(shù)據(jù)較難實(shí)現(xiàn)共享,存在明顯的“數(shù)據(jù)孤島”現(xiàn)象。

目前國(guó)內(nèi)AI模型訓(xùn)練所需要的醫(yī)療數(shù)據(jù),大都是通過(guò)企業(yè)和醫(yī)院簽署研發(fā)協(xié)議獲得。在實(shí)際操作中,會(huì)有專(zhuān)門(mén)的模塊進(jìn)行數(shù)據(jù)清洗,只保留必要的數(shù)據(jù)。而在數(shù)據(jù)收集到模型建立過(guò)程中,醫(yī)院和企業(yè)需要做好物理隔離,做到數(shù)據(jù)不出院,模型出院。

另一方面,大量訓(xùn)練數(shù)據(jù)集意味著高昂的成本。這也就提出了新的挑戰(zhàn):數(shù)據(jù)集合模型究竟要多大才合適?但實(shí)際情況卻可能是:收集醫(yī)療數(shù)據(jù)的需求取決于醫(yī)療實(shí)際應(yīng)用情況,甚至無(wú)法對(duì)數(shù)據(jù)需求做出準(zhǔn)確的預(yù)估。例如,對(duì)于癌癥的診斷,需要由影像科、病理科、腫瘤科醫(yī)生組成的多學(xué)科專(zhuān)家小組共同判斷,保證患者拿到一份準(zhǔn)確的診斷書(shū)。而當(dāng)這樣的診斷交給AI模型時(shí),其輸出的內(nèi)容又該如何進(jìn)行事實(shí)核查?

另外,雖然國(guó)內(nèi)已經(jīng)出現(xiàn)了一些AI醫(yī)生,例如阿里健康的AI醫(yī)生號(hào)稱(chēng)能在1.5秒內(nèi)給出90%準(zhǔn)確性的診斷;百度的AI醫(yī)生可以識(shí)別900多種常見(jiàn)疾病,但恐怕沒(méi)有患者會(huì)將其診斷和大醫(yī)院的專(zhuān)家診斷相提并論,這說(shuō)明了當(dāng)下最大的問(wèn)題——你真的相信AI醫(yī)療診斷嗎?

3

哪些賽道勝算最大?

綜上,在新一波人工智能浪潮下,醫(yī)療診斷的AI解決方案依然挑戰(zhàn)不斷,保有很大的想象空間。那么,在AI醫(yī)療其他賽道,有哪些機(jī)遇可以被企業(yè)立即抓?

從市場(chǎng)需求及規(guī)模來(lái)看,國(guó)內(nèi)AI醫(yī)療影像、AI藥物研發(fā)依舊是主要的增長(zhǎng)突破口。也就是說(shuō),屬于上一輪AI醫(yī)療浪潮的任務(wù)還沒(méi)完成。

醫(yī)學(xué)影像科在醫(yī)院發(fā)展過(guò)程中扮演著舉足輕重的角色,影像數(shù)據(jù)目前占據(jù)醫(yī)療數(shù)據(jù)的90%,年增長(zhǎng)率超過(guò)30%;影像報(bào)告占據(jù)全部診斷信息的70%;影像科的收入占據(jù)醫(yī)院收入的比重超過(guò)25%。

根據(jù)Global Market Insights的數(shù)據(jù),全球AI醫(yī)療影像市場(chǎng)規(guī)模占醫(yī)療AI市場(chǎng)的25%,是僅次于AI制藥的第二大細(xì)分市場(chǎng)。對(duì)于國(guó)內(nèi)醫(yī)療行業(yè)來(lái)說(shuō),目前我國(guó)醫(yī)療影像數(shù)據(jù)的年增長(zhǎng)率高達(dá)30%,但是影像科的醫(yī)生年增長(zhǎng)率卻只有4%?紤]到醫(yī)生的培訓(xùn)周期比較長(zhǎng),發(fā)展AI影像醫(yī)療能夠有效緩解醫(yī)療人才短缺的問(wèn)題,市場(chǎng)仍有較大的增長(zhǎng)潛能。

而在AI藥物研發(fā)方面,AI可以有效解決新藥研發(fā)的高成本、低效率和高風(fēng)險(xiǎn)的問(wèn)題。2020年我國(guó)新藥研發(fā)行業(yè)的市場(chǎng)規(guī)模為1.2萬(wàn)億元,但是新藥研發(fā)的成功率僅為11.3%,即使進(jìn)入III期臨床成功率也只有53.4%,臨床階段整體費(fèi)用占比高達(dá)70%。

這說(shuō)明新藥研發(fā)需要投入巨額的資金和時(shí)間,但是收益和風(fēng)險(xiǎn)都很不確定。而通過(guò)人工智能的認(rèn)知能力,加速靶點(diǎn)發(fā)現(xiàn)、化合物篩選、藥物設(shè)計(jì)等環(huán)節(jié),可以有效提高新藥的成功率和質(zhì)量。

例如2021年,我國(guó)AI藥企英矽智能與浙江大學(xué)合作,利用自主研發(fā)的AI平臺(tái),對(duì)抗癌藥物PD-1抗體進(jìn)行了優(yōu)化設(shè)計(jì),并獲得了美國(guó)FDA的臨床試驗(yàn)許可。這樣的成就顯示了AI技術(shù)在新藥研發(fā)方面的潛力,也預(yù)示了其規(guī);鲩L(zhǎng)的可能。

 END

       原文標(biāo)題 : 叫好不叫座,AI醫(yī)療“卡脖子”難題如何破解?

聲明: 本文由入駐維科號(hào)的作者撰寫(xiě),觀點(diǎn)僅代表作者本人,不代表OFweek立場(chǎng)。如有侵權(quán)或其他問(wèn)題,請(qǐng)聯(lián)系舉報(bào)。

發(fā)表評(píng)論

0條評(píng)論,0人參與

請(qǐng)輸入評(píng)論內(nèi)容...

請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字

您提交的評(píng)論過(guò)于頻繁,請(qǐng)輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無(wú)評(píng)論

暫無(wú)評(píng)論

醫(yī)療科技 獵頭職位 更多
文章糾錯(cuò)
x
*文字標(biāo)題:
*糾錯(cuò)內(nèi)容:
聯(lián)系郵箱:
*驗(yàn) 證 碼:

粵公網(wǎng)安備 44030502002758號(hào)